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The behaviour of the long-time self-diffusion tensor in concentrated colloidal dis-
persions is studied using dynamic simulation. The simulations are of a suspension
of monodisperse Brownian hard spheres in simple shear flow as a function of the
Péclet number, Pe, which measures the relative importance of shear and Brownian
forces, and the volume fraction, φ. Here, Pe = γ̇a2/D0, where γ̇ is the shear rate, a
the particle size and D0 = kT/6πηa is the Stokes–Einstein diffusivity of an isolated
particle of size a with thermal energy kT in a solvent of viscosity η. Two simulations
algorithms are used: Stokesian Dynamics for inclusion of the many-body hydrodyn-
amic interactions, and Brownian Dynamics for suspensions without hydrodynamic
interactions. A new procedure for obtaining high-quality diffusion data based on
averaging the results of many short simulations is presented and utilized. At low
shear rates, low Pe, Brownian diffusion due to a random walk process dominates and
the characteristic scale for diffusion is the Stokes–Einstein diffusivity, D0. At zero Pe
the diffusivity is found to be a decreasing function of φ. As Pe is slowly increased,
O(Pe) and O(Pe3/2) corrections to the diffusivity due to the flow are clearly seen in
the Brownian Dynamics system in agreement with the theoretical results of Morris
& Brady (1996). At large shear rates, large Pe, both systems exhibit diffusivities that
grow linearly with the shear rate by the non-Brownian mechanism of shear-induced
diffusion. In contrast to the behaviour at low Pe, this shear-induced diffusion mode
is an increasing function of φ. Long-time rotational self-diffusivities are of interest
in the Stokesian Dynamics system and show similar behaviour to their translational
analogues. An off-diagonal long-time self-diffusivity, Dxy , is reported for both systems.
Results for both the translational and rotational Dxy show a sign change from low Pe
to high Pe due to different mechanisms in the two regimes. A physical explanation
for the off-diagonal diffusivities is proposed.

1. Introduction
This work addresses the problem of determining the long-time self-diffusivity in a

monodisperse low-Reynolds-number suspension of spherical particles at equilibrium
and under steady shear conditions via dynamic simulation. Self-diffusion is one
of the most basic transport processes occurring in a suspension and is related to
a number of transport and relaxation mechanisms. There are three well-defined
diffusive processes in a colloidal suspension: the short-time self-diffusivity, Ds

0, the
long-time self-diffusivity, Ds∞, and the gradient or collective diffusivity, Dc. At infinite
dilution all three diffusivities are the same and equal to the Stokes–Einstein diffusivity
of an isolated particle: D0 = kT/6πηa for translational self-diffusion and Dr

0 =
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kT/8πηa3 for its rotational analogue. Here, k is Boltzmann’s constant, T is the
absolute temperature, η is the viscosity of the continuum suspending fluid, and a
is the characteristic particle size, which for a monodisperse suspension of spheres is
simply the particle radius.

As the concentration is increased and the effects of particle interactions become
important, the three diffusivities behave quite differently as they represent three
distinct physical processes. The short-time self-diffusivity measures the local particle
mobility on time scales long compared to the momentum relaxation time, τI =
m/6πηa, but small compared to the time it takes for a particle to move a fraction of
its size, which is the diffusive time scale, τD = a2/D0; here, m is the mass of the particle.
The long-time self-diffusivity is related to diffusion on times long compared to a2/D0,
so that a particle has wandered far from its starting point. Finally, the gradient or
collective diffusivity results from a flux down a macroscopic concentration gradient.
This work focuses on the long-time self-diffusivity.

While the short-time self-diffusivity depends only on the particle mobility, which
is a purely time-independent hydrodynamic quantity, the long-time self-diffusivity is
affected by both the particle mobility and the dynamic microstructure of particles ex-
changing places with their neighbours. Often researchers have simplified the system by
excluding hydrodynamic interactions, which sets the mobility of each particle to unity
and independent of microstructural variations, effectively isolating the contribution
of the dynamic microstructure to the long-time self-diffusivity. A Brownian Dynamics
algorithm is employed for the simplified system of hard spheres interacting in the
absence of hydrodynamic interactions. For the complete system, the computationally
intensive Stokesian Dynamics algorithm that includes the many-body hydrodynamic
interactions into the Brownian Dynamics framework is used. A goal of this work is
to compare and contrast results from these two systems to provide insight into the
relevant mechanisms for long-time self-diffusion.

Much work has been done on the long-time self-diffusivity at both equilibrium
and in the high-shear limit. Dynamic light scattering can be used to measure the
self-diffusivity at equilibrium, while tracer experiments, where a small fraction of the
particles are tagged and their motion monitored, can be used, in principle, at any
shear rate, although only experiments at high shear rates have been performed to
date. Out of equilibrium, structural anisotropies arise due to the shearing flow and
the long-time self-diffusivity is properly represented in full tensorial form, Ds∞, whose
components are defined using a Cartesian coordinate system, (x, y, z), with principal
axes corresponding to the velocity, velocity-gradient, and vorticity directions in simple
shear flow, respectively.

Theoretical work on self-diffusion at high shear rates is complicated by the fact
that two particles acting solely under the influence of hydrodynamics exhibit no
diffusive behaviour due to the symmetry properties of low-Reynolds-number flow.
Wang, Mauri & Acrivos (1996) examined self-diffusion in dilute suspensions theo-
retically using three-particle interactions. da Cunha & Hinch (1996) examined the
two-particle problem, adding surface roughness to create diffusive motion. Brady &
Morris (1997) used residual Brownian motion and hard-sphere interparticle forces to
break the symmetry of the pure hydrodynamic limit. Effects of weak shear on self-
diffusion were studied by Morris & Brady (1996). The last two studies are referred
to many times throughout this paper and will be discussed in more detail in § 2. One
interesting prediction of these works is the appearance of a non-zero off-diagonal
or xy-component of the long-time self-diffusivity tensor in simple shear flow. This
quantity is difficult to measure both experimentally and via simulation as it involves
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examining motion in the direction of the bulk flow. The current work makes use of
a method for calculating the diffusivity that enables us to obtain meaningful results
for this quantity.

We also present results for the long-time rotational diffusivity. Theoretical work
by Jones (1989) and Degiorgio, Piazza & Jones (1995) predict behaviour for dilute
suspensions at equilibrium considering two- and three-body hydrodynamic interac-
tions. Short-time rotational diffusivities at equilibrium for all volume fractions were
determined by Stokesian Dynamics simulations by Phillips, Brady & Bossis (1988).
Many advances have been made recently in experimentally measuring rotational
self-diffusion using techniques ranging from dynamic depolarized light scattering
(Degiorgio et al. 1995), forced Rayleigh scattering (Kanetakis & Sillescu 1996), and
nuclear magnetic resonance spectroscopy (Barrall et al. 1996; Kanetakis, Tölle &
Sillescu 1997). To date, work has been performed at equilibrium with extensive focus
on the behaviour of the short-time rotational self-diffusivity over a wide range of
volume fraction, φ.

In the next section we discuss the theoretical results of Morris & Brady (1996) and
Brady & Morris (1997), analysing what behaviour is to be expected in shear flow.
Section 3 outlines the simulation method, discussing the two simulation techniques
used, how the diffusion coefficients are calculated, and a new way of splitting the
diffusivity into its hydrodynamic and Brownian contributions. In § 4, results for the
diagonal components of the long-time self-diffusion tensor are presented showing
their dependence on both density and shear rate. The simulation results are shown
to compare well with experimental data. Section 5 is devoted to discussing the off-
diagonal components of the self-diffusion tensor and presenting possible physical
mechanisms for this mode of diffusion. Finally, we conclude in § 6 with a summary
and suggestions for future studies.

2. Theoretical background
According to the theoretical results of Morris & Brady (1996), at small shear rates

in the absence of hydrodynamic interactions, the long-time self-diffusion tensor of
colloidal suspensions has the following form:

Ds∞ = D0[(1− 2φ)I + 46
15
φ( 1

2
Pe)Ê + 0.65φ( 1

2
Pe)3/2I + O(φ2, Pe2)], (1)

where the Péclet number Pe = γ̇a2/D0 = 6πηa3γ̇/kT and γ̇ is the shear rate. The non-
dimensional rate of strain tensor is Ê = E/γ̇, and I is the isotropic tensor. This result
is strictly valid to leading order in volume fraction, φ, but the general form may be
applicable at higher concentrations. The O(Pe) contribution is valid for a general linear
flow and represents a correction to the diffusion due to a perturbed microstructure. For
weak flows, there is an O(Pe) deformation to the equilibrium microstructure that scales
as PeÊ . This perturbation causes a volume fraction fluctuation of −φPeÊ around a
particle; there is a buildup of particles in the compressional zones and a depletion
of particles in the extensional zones (Batchelor 1977). For a simple random walk in
the perturbed microstructure, we obtain the φPeÊ correction to the diffusivity. The
O(Pe3/2) term for simple shear flow is isotropic, and represents the first contribution
to the normal components of the long-time self-diffusion tensor. This term results
from a singular effect of weak advection at large separations, r/a ∼ O(Pe−1/2) (Leal
1973), and can be clearly seen in figure 4.

Morris & Brady (1996) also studied the effect of including hydrodynamic inter-
actions on diffusion. For small Pe, the long-time self-diffusion tensor in a dilute
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suspension behaves as

Ds∞ = D0[(1− 2.07φ)I + 0.30φ( 1
2
Pe)Ê +Dφ( 1

2
Pe)3/2 + O(φ2, Pe2)], (2)

where, for simple shear flow,

D =

 3.96 0.93 0
0.93 1.87 0

0 0 0.52

 .

Equation (2) has the same general form as (1) with a few exceptions. The equilibrium
isotropic term and the O(Pe) term valid for general linear flow have different coeffi-
cients and show a hindrance of the diffusion process on the inclusion of hydrodynamic
interactions. Also, the O(Pe3/2) contribution is no longer isotropic, not only showing
different contributions along the diagonal but also a significant positive contribution
to the off-diagonal xy-component.

The behaviour at high Pe has also been analysed theoretically by Brady & Morris
(1997) and da Cunha & Hinch (1996). Brady & Morris (1997) find that the long-time
diffusivity for monodisperse hard spheres in the absence of hydrodynamic interactions
is related to the particle contribution to the stress, Σ, by the following relation:

Ds∞ = −a
2

η

1

φ

2

27
Σ, (3)

which supports the idea of self-diffusion being driven by the osmotic, or partial,
pressure: the self-diffusivity is the product of the particle mobility, which is O(1) in
the absence of hydrodynamic interactions, and the osmotic pressure gradient ∂Σ/∂φ.
The coefficient 2

27
in (3) is strictly valid only for dilute suspensions, but the origin

of the asymmetry that gives rise to the diffusion process is in a singular boundary
layer at particle contact and thus the proportionality in (3) should be valid for all φ.
From this relation we can come to several conclusions about the long-time diffusivity.
First, since all components of the stress tensor scale as ηγ̇ in the high shear limit, all
diffusivities scale as γ̇a2, as simple dimensional reasoning would suggest. Second, the
simple radial-balance approximation used by Brady & Morris (1997) predicts a zero
first normal stress difference, N1 = Σxx − Σyy , as well as a negative second normal
stress difference, N2 = Σyy − Σzz . The normal stress differences lead to the inequality
Σzz > Σyy ≈ Σxx, which due to the minus sign in (3), gives long-time self-diffusivities
of the following relative magnitudes: Dxx ≈ Dyy > Dzz . Also, there is a positive off-
diagonal component to the stress tensor Σxy – the shear stress is non-zero – resulting
in a negative value of Dxy . These simple high-Péclet-number predictions are born out
in the Brownian Dynamics simulation. (cf. figures 3 and 19).

The inclusion of hydrodynamic interactions complicates matters in an important
way. The pure-hydrodynamic limit corresponding to hydrodynamic interactions only,
no Brownian motion nor interparticle forces, is a singular limit and, for two particles,
exhibits no diffusion due to the symmetry and reversibility of low-Reynolds-number
flow. The symmetry can easily be broken, however, by the presence of other forces,
whether they are due to Brownian motion or to a repulsive interparticle force of non-
hydrodynamic origin, no matter how small in magnitude. The simple relationship
between diffusivity and stress in (3) no longer holds due to the complexity of the
hydrodynamic interactions. However, the diffusivity can still be thought of as a particle
mobility times an osmotic pressure gradient, but the particle mobility is no longer a
constant due to the presence of lubrication forces near contact. Apart from the special
case of the pure hydrodynamic limit, the principal effect of hydrodynamic interactions
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is the quantitative dependence of the diffusivity on the volume fraction φ. The first
normal stress difference, N1, is no longer zero and has been shown by simulation to be
negative. This leads the inequality Σzz > Σyy > Σxx, which results in diffusivities of the
following magnitudes: Dxx > Dyy > Dzz . As before, the sole off-diagonal contribution
is a negative Dxy . Figures 5 and 21 show that these simple predictions at high Péclet
number are born out in the Stokesian Dynamics simulations.

3. Simulation method
Long-time self-diffusivities were determined with and without hydrodynamics using

Stokesian Dynamics and Brownian Dynamics simulations, respectively. Brownian
Dynamics is appropriate for particles interacting through long-range repulsive forces
such that the thermodynamic volume fraction – based on the radius of the overlapping
repulsive forces – is much larger than the hydrodynamic volume fraction – based on
the actual size of the particles. Stokesian Dynamics, since it includes hydrodynamics,
is applicable in general no matter what the form or range of interparticle forces;
indeed, Brownian Dynamics is a special limiting case of Stokesian Dynamics. Rather
than focusing on specific systems, however, the point of conducting both Brownian
and Stokesian Dynamics simulations is to try to separate the geometric and statistical
effects, which are present in both methods, from the hydrodynamic effects, which
are only present in Stokesian Dynamics. We shall see that provided the suspension
is disordered (a state that cannot be reached at high Péclet number with Brownian
Dynamics as discussed below) hydrodynamics apparently has only a quantitative
effect (cf. figures 11 and 14).

We shall not focus on the details of these two techniques, as they are found
elsewhere, but rather give a brief overview of each, and then discuss how they were
implemented to compute the long-time self-diffusivities. The Brownian Dynamics
algorithm used here is based on the method of Heyes & Melrose (1993) and Schaertl
& Sillescu (1994). Measurement of the long-time self-diffusivities involves calculation
of the mean-square displacements of each particle over time, which are calculated
from the individual particle trajectories. These trajectories are governed by the particle
evolution equation for this system:

∆x = ∆xa + ∆xHS + X (∆t), (4a)

X = 0 and X (∆t)X (∆t) = 2D0I∆t. (4b)

Here, ∆xa = U∆t is the affine contribution due to the bulk shear flow and is
simply γ̇yı̂∆t for simple shear flow. The random Brownian step, X , has zero mean
(denoted by the overbar) and variance equal to the single-particle Stokes–Einstein
diffusivity, D0, in the absence of hydrodynamic interactions. After the affine and
Brownian contributions are added, the algorithm searches for particle pairs that have
overlapped during the time step ∆t and displaces each particle ∆xHS along their
line of centres returning the particles to contact in response to a hard-sphere-like
interparticle force. There is a small inherent ‘softness’ to the interparticle potential
due to three-body effects that are not resolved using this method, but these systems
have been shown to mimic the behaviour of hard spheres in several regards. The
shear stress autocorrelation function is found to diverge at short times as t−1/2, the
osmotic pressure as a function of φ shows good agreement with the hard-sphere
equation of state, and the equilibrium radial-distribution function agrees with the
known form for hard spheres (Foss 1999). The simplicity of the algorithm used in this
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work allows for systems with large numbers of particles (N = 1331, in this study),
reducing the statistical noise. Hard-sphere suspensions can also be approximated
using a steep, continuous, interparticle potential, such as r−n, where n is made very
large. These algorithms produce very large values of the interparticle force near
contact which necessitates the use of an extremely small time step in order to prevent
an unrealistically large particle displacement during a typical particle collision.

In simple-shear flow, the mean-square displacements are expected to grow with
time according to those for diffusion from a point source (Elrick 1962; Morris &
Brady 1996):

〈x2(t)〉 = 2Dxxt+ 2Dyyt [1 + 1
3
(γ̇t)2], (5a)

〈y2(t)〉 = 2Dyyt, (5b)

〈z2(t)〉 = 2Dzzt, (5c)

〈x(t)y(t)〉 = 2Dxyt+ Dyyt(γ̇t), (5d)

as t → ∞. Here the angle brackets 〈 〉 denote an average over all particles in the
system. The diffusivity in the velocity-gradient direction, Dyy , provides not only the
normal diffusive behaviour in the y-direction, but also couples with the motion
in the x-direction, resulting in 〈x2(t)〉 growing cubically with time and 〈x(t)y(t)〉
growing quadratically in time, both with a proportionality constant given by Dyy . The
underlying linear growth represented by the presence of Dxx and Dxy is dominated by
the convectively enhanced stronger growths of the 〈x2(t)〉 and 〈x(t)y(t)〉 displacements,
making these diffusivities computationally difficult to measure. To circumvent this
problem, we can take advantage of the fact that in simulation we know precisely
the affine displacement at each time step, ∆xa in (4a). By subtracting off the affine
displacement at each instant as far as the mean-square displacement is concerned, we
can remove this nonlinear temporal growth and extract all components, Dyy , Dxx, Dzz
and Dxy . Note, as far as the suspension structure and dynamics are concerned, the
affine displacement is, of course, added; it is only removed to compute Ds∞. Thus, the
long-time self-diffusivity is given by

Ds∞ = lim
t→∞

1

2

d

dt
〈(x(t)− xa(t))(x(t)− xa(t))〉, (6)

where xa(t) represents the affine contribution to a particle’s displacement. This ap-
proach of subtracting off the affine displacement was also used successfully by Sami
(1996) in extensional flow, where the temporal growth of the convectively enhanced
dispersion is now exponential rather than a power law.

The inclusion of hydrodynamics, which includes both the many-body far-field
interactions and the pairwise-additive lubrication forces between particles, necessitates
the use of the Stokesian Dynamics simulation technique described in detail elsewhere
(Bossis & Brady 1987; Brady & Bossis 1988). The computational cost of calculating
all the hydrodynamic interactions in conventional Stokesian Dynamics is O(N3), and
thus we are limited to relatively small system sizes (generally N = 27). As before,
the particle-evolution equation contains all the vital information for calculating the
mean-square displacements. Previously, the particle stress was shown to consist of
both hydrodynamic and Brownian contributions (Bossis & Brady 1989), and the
particle trajectories are no different. For Stokesian Dynamics, it is useful to write the
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evolution equation as

∆x = ∆xa + ∆xH + ∆xB. (7)

Here, we have broken the evolution equation into three contributions. The first is the
affine displacement:

∆xa = U∆t = γ̇yı̂∆t, (8)

which simply advects the particle along with the bulk shear flow. The second contri-
bution, the hydrodynamic displacement, is given as

∆xH = R−1
FU ·RFE :E∆t. (9)

Here, RFU and RFE are configuration-dependent hydrodynamic resistance tensors.
These displacements describe the deviation in particle paths from the affine motion
solely due to hydrodynamic interactions. The remaining contribution to the parti-
cle evolution equation is the Brownian displacement, originally given by Ermak &
McCammon (1978) as

∆xB = kT∇ ·R−1
FU∆t+ X (∆t), (10a)

X = 0 and X (∆t)X (∆t) = 2kTR−1
FU∆t. (10b)

Here, the short-time self-diffusion tensor enters as kTR−1
FU (which is just the Stokes–

Einstein diffusivity using the many-body hydrodynamic mobility, R−1
FU , instead of the

single-particle inverse Stokes drag) as the variance of the random step X . Also, because
the random step is large, O(∆t1/2), compared to the O(∆t) size of the hydrodynamic
and affine displacements, a higher-order term including the spatial gradient of the
short-time diffusion tensor must be included to account for changes in the particle
mobility during the random step. This deterministic term acts as a radially repulsive
force and helps to prevent particles from overlapping during a random step. No
interparticle forces of non-hydrodynamic origin are required in order to prevent
particle overlaps and no such forces are included in Stokesian Dynamics simulations.

All positions x are non-dimensionalized by the particle radius a, the rate-of-strain
tensor E by its magnitude γ̇, the imposed velocity U by γ̇a and the hydrodynamic
resistance tensors RFU and RFE by 6πηa and 6πηa2, respectively. There are two charac-
teristic time scales: the time scale for the affine and hydrodynamic displacements is the
flow time scale, γ̇−1, whereas the relevant time scale for the Brownian displacements is
the diffusive time scale, a2/D0 = 6πηa3/kT . The ratio of the diffusive time scale to the
flow time scale is the Péclet number, Pe = γ̇a2/D0. Thus, one can think of the random
Brownian displacements as those that are present at equilibrium in the absence of
flow (Pe = 0), and the hydrodynamic displacements as those that accompany the
affine flow in the pure hydrodynamic limit (Pe−1 ≡ 0). This non-dimensionalization
applies to both the Stokesian Dynamics and Brownian Dynamics systems and the
Péclet number is also the appropriate non-dimensional shear rate for the Brownian
Dynamics system (4a).

The pure hydrodynamic limit – no Brownian motion and no interparticle forces – is
singular and in order to resolve the strong lubrication forces between the par-
ticles an infinitesimally small time step is required resulting in prohibitive compu-
tational cost (Ball & Melrose 1995; Dratler & Schowalter 1996). Inclusion of a
non-hydrodynamic interparticle repulsive force is often used to study non-Brownian
suspensions (Yurkovetsky 1998); here, we shall limit ourselves to large, but finite,
Pe, where residual Brownian motion is sufficient to prevent particle overlaps with a
serviceably finite simulation time step. The fact that there are no interparticle forces
may have implications for the resulting diffusivity, however.
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As with Brownian Dynamics, the particle mean-square displacements are calculated
as a function of time ignoring the affine displacements to eliminate nonlinear temporal
behaviour. Here, we have the advantage of separating the hydrodynamic and random
Brownian contributions,

〈(x− xa)(x− xa)〉 = 〈xHxH〉+ 〈xBxB〉+ [〈xHxB〉+ 〈xBxH〉]. (11)

Unlike the particle displacements, the square displacements are not additive and
a symmetric cross-correlation term between hydrodynamic and random Brownian
displacements appears. Comparing (11) to (6) we can define

Ds∞ = Ds∞,h + Ds∞,b + Ds∞,hb, (12)

providing useful knowledge of the individual contributions to the long-time self-
diffusion tensor. This division of diffusivities is not possible in Brownian Dynamics
due to the inclusion of the hard-sphere-like interparticle force which acts in the same
manner in response to both Brownian and affine motion and thus cannot itself be
separated into Brownian and non-Brownian components.

One might question the validity of dividing the displacements in such a manner.
In separating the hydrodynamic and Brownian displacements we do not claim that
each one is acting independently of the other. Clearly, the two are acting together
to create a dynamic microstructure that in turn affects the temporal behaviour of
the trajectories of each particle. Separation of the displacements is a relatively simple
matter in the context of a computer simulation, however, and provides some insight
into the mechanisms for self-diffusion.

Calculation of the mean-square displacement curves for both Brownian Dynamics
and Stokesian Dynamics is done with the aid of a novel method. First, the simulations
are kept relatively short, that is, for a time sufficient for the system to reach a
steady state and for the mean-square displacements to enter the linear regime for an
appreciable length of time. Second, many of these short simulations are performed
independently from separate initial hard-sphere equilibrium configurations, creating
a large number of mean-square displacement curves. All of these curves are then
averaged together point by point to form one smooth mean-square displacement
curve. Figure 1 shows that times up to a strain of 1 or 2 are sufficient to achieve
a linear growth in the mean-square displacement. In a like manner, stresses have
reached their steady state in a strain of 1.

This method works well for four reasons. First, averaging over many runs reduces
the costly N−1/2 noise present in random walk calculations. This is especially advan-
tageous when using Stokesian Dynamics as the cost of increasing the system size is
high. Second, although averaging over long times is useful in obtaining good data in
finite systems for properties with well-defined instantaneous values such as stresses
and spatial distribution functions, it often creates problems in time-dependent correla-
tions such as Green–Kubo auto-correlation functions and mean-square displacements.
These quantities continue to directly depend on – instead of becoming independent
of – the initial condition of the system. For this reason the statistical noise in these
functions grows with time. More realizations, i.e. averaging over many correlations
from different starting points, is used to obtain better quality autocorrelation func-
tions, but the long-time ‘tails’ of these functions are very difficult to measure accurately.
This is true for mean-square displacements for the same physical reasons. As a particle
has diffused far from its starting point the instantaneous random fluctuations of the
particle have very little dependence on the initial particle position and thus show large
fluctuations in the mean-square displacement curve. The use of many realizations can
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Figure 1. Mean-square displacements as a functions of time (a) for the Brownian Dynamics system
for φ = 0.45, Pe = 1000 and (b) Stokesian Dynamics system for φ = 0.45, Pe = 0.3, comparing data
using both one and all realizations.

delay the onset of this noise, whether it be by frequently resetting the starting point,
or by increasing the number of particles, but the noise will always persist at long
times.

This brings us to the third point: analysis of the mean-square displacement curves
at very long times is not necessary because it does not require a very long time
for the mean-square displacements to reach their linear, long-time asymptote. This
may seem counterintuitive due to the infinite time limit present in (6), but a particle
does not have to travel long distances in order to reach its long-time asymptote; it
simply has to encounter enough particle–particle interactions to sample the dynamic
microstructure present. In the familiar cage-diffusion model, the particle does not
have to leave the cage and travel far from its starting point, it simply has to interact
with enough of its neighbouring cage members until all the information necessary
for long-time diffusion has been attained. This idea has been born out by the recent



252 D. R. Foss and J. F. Brady

experimental work of Breedveld et al. (1998) who measured long-time diffusivities at
high Pe and found adequate agreement with previous measurements despite the fact
that their mean-square displacement data are limited to times less than 0.6γ̇−1 (cf.
figure 14).

Finally, in the Brownian Dynamics system at high Pe and at very long times (strain
of O(20) and Pe > 100 for φ = 0.45) the suspension orders into a string phase (Heyes
& Melrose 1993; Rastogi 1995; Foss & Brady 1999), with the strings aligned in the
flow direction. In the string phase, the diffusivities are dramatically reduced over what
they are in a disordered phase. While it is of interest to study the diffusivities in
the string phase (Foss & Brady 1999), here we wish to compare the Stokesian and
Brownian Dynamics systems, and the Stokesian Dynamics system with hydrodynamic
interactions remains disordered for all Pe. As seen in figure 1, meaningful long-time
mean-square displacements can be obtained for suspensions without hydrodynamic
interactions for strains of O(1) where the suspension is still disordered.

In the absence of hydrodynamic interactions, the rotation of the particles is not
coupled with the flow or the microstructure and each particle rotates freely under
the influence of rotary Brownian motion exhibiting isotropic rotational self-diffusion
governed by the Stokes–Einstein equation, Ds,r

0 = kT/8πηa3 for both short and long
time scales. Inclusion of hydrodynamic interactions couples rotation and translation
resulting in a long-time rotational self-diffusion tensor that varies as a function
of φ and Pe. Calculating this tensor is done in exactly the same manner as the
translational self-diffusion tensor except the particle angular displacements are used
in lieu of the translational displacements. One notable difference is that the affine

angular displacement, − 1
2
γ̇k̂∆t, is directed along the vorticity axis in simple shear flow

and, due to the fact that it has no spatial dependence, does not create any convectively
enhanced angular dispersion. For consistency, the affine angular displacements have
been subtracted off when calculating the mean-square angular displacements.

4. Results
This work will focus on the equilibrium and non-equilibrium behaviour of the

long-time self-diffusivity of a suspension of monodisperse spheres in the presence of
Brownian motion with and without hydrodynamic interactions. As discussed earlier,
the Péclet number, Pe, is the parameter we shall use to determine the relative
magnitudes of Brownian motion and the imposed shear flow. The other important
parameter of interest in a hard-sphere suspension is the volume fraction, φ, which is
a measure of the particle concentration. In order to reduce the number of parameters
in the system, we limit our study in the following manner: To study the effects of
Pe, we focus on one volume fraction, φ = 0.45, and vary Pe from 0 to 1000 in
order to capture the full range of equilibrium and non-equilibrium behaviour. This
volume fraction represents a relatively concentrated system, but remains below the
equilibrium phase transition at φ = 0.494. Then, to examine the role of the volume
fraction, we focus on two Péclet numbers, Pe = 0 and Pe = 1000, in order to examine
the equilibrium and high-shear limits, respectively.

As stated in the previous section, two separate simulation techniques were used
in this work. For the Brownian Dynamics simulations, a large system was studied,
N = 1331, and the number of independent repetitions of each run from different
starting configurations was set to be 91. To explain the length of each run, we
must discuss the non-dimensionalizations for time in the regimes being studied. At
equilibrium and low shear rates (Pe 6 1), the diffusive time, a2/D0, is used, while at
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Figure 2. Standard deviations calculated from subset averages as a function of the number of data
points included in each subset, Nv . These data are from the Stokesian Dynamics system, φ = 0.20,
Pe = 1000, N = 27, and 182 total independent realizations.

high shear rates, the flow time, γ̇−1, is used. The time step for all the simulations
is ∆t = 2.5 × 10−4 and the number of time steps used is 4000. This sets the length
of the simulation to be one particle diffusive time at low shear rates, and one
strain at high shear rates. As mentioned before, at high shear rates systems in
the absence of hydrodynamics are known to order into strings that are aligned in
the flow direction, which results in a significant decrease in the diffusivities. The
disorder–order transition generally takes approximately twenty strains to form from
an equilibrium starting configuration while the mean-square displacements reach their
long-time linear asymptote in less than one strain, as shown in figure 1. Thus, we
can extract meaningful long-time self-diffusivities for the disordered state from the
limiting behaviour shown in figure 1; specifically, diffusivities were determined from
linear fits to the mean-square displacement curves for 0.8 6 γ̇t 6 1.

The Stokesian Dynamics simulations were performed in the same manner but with
a few changes. Computational costs limited us to a smaller system, N = 27. This was
partially compensated for by increasing the number of repetitions to 182. However,
for a given run the simulation cell with N = 27 is substantially smaller than a cell
from a run for Brownian Dynamics with N = 1331 and this finite simulation cell
may affect the final values for the diffusivities – the results may not give the large-
N limit. The same non-dimensionalizations for time are used, but the presence of
hydrodynamics has the effect of slowing down the dynamics of the system. For this
reason, we used a larger time step of ∆t = 5.0 × 10−4 while maintaining the total
number of steps used at 4000. This sets a longer simulation length of two particle
diffusive times near equilibrium, and two strains at high shear rates.

To give the reader an idea of the statistical noise in the results, the following
process was performed wherever possible. Each of the 91 (or 182) simulations for
each system produces a mean-square displacement curve and a value for the long-
time self-diffusivity. These values can then be grouped into subsets of Nv values and
averaged. The standard deviation of the subset averages can be used as a measure of
the amount of uncertainty in the data. Of course, the measured uncertainty decreases
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Figure 3. Diagonal components of the long-time self-diffusion tensor as a function of Pe for the
Brownian Dynamics system. N = 1331, φ = 0.45.

as the number of values chosen to be in each subset, Nv , increases. Figure 2 shows the
size of the uncertainty as a function of Nv , showing that the error decays like N

−1/2
v

as one would expect from independent subsets of data. At first, the best choice for
Nv would seem to be taking the standard deviation of the diffusivities obtained from
each individual simulation, Nv = 1. This produces the largest error as the uncertainty
in each individual run is determined by the number of particles used and does not
take advantage of any averaging over independent realizations and often results in
large error bars on data with high internal consistency. In contrast, grouping all of
the realizations into one or two subsets might be construed as an attempt to unfairly
minimize the uncertainties. We choose an intermediate condition of 6 subsets of 15 (or
30) simulations for use in determining the uncertainty represented by the error bars
on our graphs. For the Brownian Dynamics simulations, the error bars are always less
than the symbol size and are not shown. No attempt was made to simulate systems
with varying N in order to extrapolate for large N because of the large computational
cost. This should not be a problem for the Brownian Dynamics system, but the
Stokesian Dynamics results may be affected by the small system size used.

4.1. Shear-rate dependence of diffusivities

The Pe-dependence of the diagonal components of the long-time self-diffusivity from
the Brownian Dynamics simulations are shown in figure 3. The diffusivities tend to
their constant isotropic equilibrium values at low Pe, while they grow linearly with
Pe, indicating a γ̇a2 scaling, at high shear rates. As predicted in § 2, Dzz is clearly
the smallest of the diagonal components. Dxx and Dyy are predicted to be roughly
equal at high Pe due to a zero first normal stress difference, but the data in figure 3
appear to show that Dxx > Dyy . Figure 4 represents the same data after subtraction
of the equilibrium values, clearly showing that the first correction to the diagonal
components of the long-time diffusion tensor at small Pe scales as Pe3/2 as predicted
by theory. The xx- and yy-components are roughly equal at low Pe, both being greater
than the zz-component.

Inclusion of hydrodynamic interactions results in similar behaviour. The Pe-
dependence of the normal components of the long-time self-diffusivity from the
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Stokesian Dynamics simulations are shown in figure 5. Again, the diffusivities ap-
proach their isotropic equilibrium values at low Pe and grow linearly with Pe at high
shear rates. The relative size of the normal components at high Pe is governed by
the same inequality, Dxx > Dyy > Dzz , as predicted in § 2. Figure 6 shows the same
data after subtraction of the equilibrium diffusivities, showing the enhancement of the
normal components of the long-time diffusion tensor by the flow. One can see that the
xx-component is clearly the largest of the three in agreement with (2), with Dyy being

slightly larger than Dzz . Unfortunately, the Pe3/2 scaling predicted in § 2 is not evident.
This is most likely due to the fact that the length scale for the convective outer
region, aPe−1/2, is larger than the box size, L = a(3/4πφ)−1/3N1/3 ≈ 6a, so that the
finite-N effects prevent sampling this regime. Also, the characteristic Péclet number
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for systems involving hydrodynamic interactions is Pe = Pe/Ds
0(φ), which necessitates

the use of even smaller Pe when examining the near equilibrium behaviour.
It is very interesting to note that the shear-induced diffusivities with and without

hydrodynamics at high Péclet number are comparable in magnitude, in agreement
with the prediction of Brady & Morris (1997).

The different contributions to the diffusivities with hydrodynamic interactions are
examined in figure 7 for the yy-component; the xx- and zz-components behave in
the same fashion and are not shown. At equilibrium, only the random Brownian
displacements are present and the long-time self-diffusivity is solely defined by its
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Brownian contribution, Ds∞,b. Here, it is useful to subtract the equilibrium value from
the Brownian contribution in order to study the effects of the flow on diffusion:
Ds∞,b − Ds∞,eq represents the enhancement of the random-walk-type diffusion due to
the presence of the imposed flow. At low Pe the main enhancement of the diffusivity
is from Ds∞,b, which indicates that the first correction is due to random-walk-type
diffusion that is facilitated by the external flow. We propose the following mechanism
for the enhancement of the Brownian contribution to the diffusivity. Imagine the
particles in the suspension occupying sites on a lattice. In a Brownian random walk a
particle moves from one site to a neighbouring unoccupied site. In the dilute limit, the
particle is free to step in any direction at any time because none of the other sites are
occupied. As the concentration is increased, the chances of a neighbouring site being
occupied increase, reducing the ability of a particle to make a step. The number of
occupied neighbour sites is not a constant with time as all particles are undergoing the
same random-walk process producing local density fluctuations. A particle diffusing
over long distances in a dense suspension will often be trapped in a region of high
density and be forced to wait until that fluctuation dissipates, resulting in a low value
of the diffusivity. Now, apply a shear flow to the lattice. Particles are still confined to
the lattice sites, but these sites are convected along with the flow. All motion in the
velocity-gradient direction is still caused by the random walk, but the neighbouring
sites are changing with time due to the shear flow. The effect of this is that a high
density fluctuation hindering the motion of a tagged particle can – in addition to
dissipating as a result of random-walk-type diffusion – be convected away from the
tagged particle enabling random-walk motion in the velocity-gradient direction. This
results in a larger value of Ds∞,b relative to that at equilibrium. Note that Ds∞,b is
never greater than its dilute-limit value, D0, as the easiest random walk is one in
the absence of any other particles. The shearing motion simply lessens the hindering
effects of neighbouring particles on random-walk diffusion. This effect increases as
the shear rate increases and ultimately saturates. At high Pe particles are driven into
near contact by the shearing motion and the lubrication forces reduce the particle
mobility, or short-time self-diffusivity. At smaller Pe, the reduction is rather small,
but for Pe > 10 this clustering intensifies, the hydrodynamic viscosity increases and
the drop in particle mobility becomes quite significant resulting in smaller random
displacements and a decrease in Ds∞,b. Indeed, our results show that Ds∞,b reaches a
maximum at Pe ≈ 10 where the effects of decreased mobility begin to cancel the
effects of the enhanced random walk in a shearing microstructure.

The hydrodynamic diffusivity Ds∞,h, also shown in figure 7, is the dominant con-

tribution at high Pe and grows linearly with Pe, or in dimensional form as γ̇a2, the
shear-induced diffusivity scaling. At low Pe, this contribution is very small, apparently
vanishing as Pe2 as the figure shows. The behaviour of the hydrodynamic diffusivity
can be explained by noting that the diffusion constant can be defined as a time integral
of the velocity autocorrelation function. Fluctuations in the hydrodynamic velocity
scale like γ̇a; thus, the velocity autocorrelation scales as γ̇2a2. Near equilibrium the
correlation time for the velocity fluctuation is the diffusive time, a2/D0, resulting in
an O(D0Pe

2) hydrodynamic contribution. At high shear rates, the correlation time is
the flow time γ̇−1, giving a hydrodynamic diffusivity of O(D0Pe). It should be noted
that the behaviour at high Pe may be qualitatively different from the behaviour in
the pure hydrodynamic limit (Pe−1 ≡ 0). The pure hydrodynamic limit may exhibit
no self-diffusion due to symmetry properties present in the low-Reynolds-number
microstructure. It is not known at this time whether the pure-hydrodynamic limit
has chaotic particle trajectories that generate a truly diffusive motion. It is known,
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self-diffusion tensor as a function of Pe for the Stokesian Dynamics system. N = 27, φ = 0.45.

however, that at high volume fractions the suspension jams up and ceases to flow
(Melrose & Ball 1995), so the question of diffusion may be moot. At finite Pe the
Brownian displacements do more than produce Ds∞,b which, by itself, is a negligi-
ble part of the total diffusivity; they prevent the jamming and break the symmetry
producing a microstructure suitable for hydrodynamic diffusion to occur.

The cross-correlation between the hydrodynamic and Brownian displacements,
Ds∞,hb, is also shown in figure 7. It is slightly less than the geometric mean of Ds∞,b and
Ds∞,h at intermediate Péclet numbers indicating a strong cross-correlation and less at
extreme values of Pe. It is important to note that Ds∞,hb is greater than zero for all Pe
indicating that the total diffusivity is always greater than the sum of the Brownian
and hydrodynamic contributions, and that at no point are the two displacements
negatively correlated and act against each other.
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Results for the diagonal components of the rotational long-time self-diffusion tensor
with hydrodynamics are shown in figure 8. As is the case with the translational ana-
logues, the rotational diffusivities, when non-dimensionalized by the Stokes–Einstein
rotational diffusion coefficient, Ds,r

0 , approach their constant equilibrium value at low
Pe and grow linearly, indicating a γ̇ scaling, at high shear rates. The largest of the
three diagonal components is Dzz for the entire range of Pe. The difference is small
near equilibrium as the suspension microstructure is close to isotropic, and quite
large at high Pe where the zz-component is over three times greater than the other
two components as this is the direction of the affine angular displacements. One
intriguing difference in the rotational diffusivities as compared to their translational
counterparts is that there is a slight decrease in the diffusivity with Pe at low Pe.
Figure 9 for the Brownian contribution to the diffusivity shows that Ds,r

∞,b clearly
has its maximum at equilibrium and there is no evidence of any enhancement of
‘random-spin-type’ diffusion in non-equilibrium configurations. The hydrodynamic
contribution to the diffusivities in figure 10 is scaled by γ̇ showing linear growth (Pe2

growth when scaled by Ds,r
0 ) at low Pe, and approaching a constant at high Pe quite

similar to the translational counterparts. The transition from low-shear to high-shear
behaviour occurs at higher Pe for the rotational diffusivities. The Ds,r

∞,hb contribution
(not shown) to the diffusivity is small for all Pe indicating little correlation between
the hydrodynamic and Brownian angular displacements.

4.2. Volume-fraction dependence of the diffusivities

We now turn our discussion to the effects of volume fraction φ on the high- and
low-Pe limits of the diagonal components of the long-time self-diffusion tensor. At
Pe = 0, the suspension is isotropic and all the diagonal components are equal;
thus, all the components can be averaged together tripling the amount of data and
decreasing the amount of noise present in the results. Figure 11 shows the long-time
diffusivity at equilibrium as a function of φ with and without hydrodynamics. Also
shown in the figure are previous simulation results of hard spheres in the absence of
hydrodynamic interactions. Schaertl & Sillescu (1994) employed the same simulation
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method used in this work and studied only the equilibrium behaviour. This method
allows for some particle overlap due to a finite-size time step and thus exhibits a
diffusivity that may be slightly larger than the true hard-sphere value. Cichocki &
Hinsen (1992) used a method in which particles take small random steps and if an
overlap occurs, the steps leading to the overlap are rejected and another random step
is chosen. This method should produce a diffusivity slightly smaller than the true
hard-sphere diffusivity. Nonetheless, the three sets of data are in good agreement with
each other suggesting that errors due to finite-size time steps are small. The diffusivity
with hydrodynamics is smaller due to the decrease in the short-time diffusivity from a
reduced particle mobility which decreases the size of the random Brownian steps. The
mode of diffusion at equilibrium is of random-walk type, which is hindered by the
presence of other particles, causing the diffusion constant to decrease monotonically
as φ is increased. Indeed, Brady (1994) showed that the long-time self-diffusivities with
and without hydrodynamics are simply related by the hydrodynamically-determined
short-time self-diffusion coefficient: (Ds∞)hydro = Ds

0(φ)(Ds∞)nohydro; the data in figure
11 agree with this scaling behaviour. Brady (1994) showed that Stokesian Dynamics
results for Ds∞ agree very well with experimental data.

Rotational self-diffusivities are plotted in figure 12 along with their short-time
counterparts, which are simply the particles’ average instantaneous hydrodynamic
rotational mobility. Unlike translational diffusion, there is no hindrance to rotational
diffusion without the presence of hydrodynamic lubrication forces, which are also less
singular at contact than their translational lubrication counterparts. This results in
rotational self-diffusivities that are much larger in comparison to their translational
counterparts. Also, the long-time rotational diffusivities are only slightly less than
their short-time counterparts indicating that the dynamic microstructure plays only
a small role in the diffusive behaviour. The experimental results of Digiorgio et al.
(1995) for the rotational short-time self-diffusivities are also included in figure 12 for
comparison with the simulation data. There are no corresponding results for Brownian
Dynamics simulation because in the absence of hydrodynamic interactions particle
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Figure 12. Equilibrium values of the rotational long-time self-diffusivity as a function of φ for the
Stokesian Dynamics system. Values of the rotational short-time diffusivity from both simulation
and experiment are included for comparison.

rotational mobility is unity and unaffected by the dynamics of the microstructure,
and the long- and short-time rotational self-diffusivities are equal to each other and
equal to the dilute limit Stokes–Einstein diffusivity Ds,r

0 .
At high Pe, the mechanisms for diffusion are markedly different from those at equi-

librium. Diffusion is driven by particle–particle interactions that prevent coincident
particles on neighbouring streamlines in shear flow from passing through one another.
The frequency of these interactions increases with volume fraction. Simulation data
are not available at dilute volume fractions as particle collisions are so infrequent
that the mean-square displacements do not reach their long-time asymptote in the
time of the simulation runs. In the dilute limit it may be more fruitful to employ the
trajectory calculation scheme of da Cunha & Hinch (1996).

The normal components of Ds∞ at Pe = 1000, scaled by γ̇a2, the appropriate scale
for high-Pe diffusion, are shown for the Brownian Dynamics system in figure 13(a)
and the Stokesian Dynamics system in figure 13(b). For the Brownian Dynamics
system, all three diffusivities are monotonic increasing functions of φ; Dzz is clearly
the smallest of the three diffusivities with Dxx slightly greater than Dyy for all except
for the highest volume fraction where Dyy is larger. The Stokesian Dynamics results
show somewhat different behaviour. The inequality Dxx > Dyy > Dzz holds for all φ,
but only Dzz clearly appears to be monotonically increasing in this range of φ. Of
the other terms, Dyy increases at first and reaches a plateau, and Dxx appears to be
constant over the entire range studied here. This differs from the Brownian Dynamics
result and is not in agreement with the theoretical results of Brady & Morris (1997)
who predict that all components are strictly increasing functions of φ, with and
without hydrodynamic interactions. Due to system size constraints, we were not able
to study larger and more dense systems to validate these behaviours. A possible
reason for the non-monotonic growth is that for the Stokesian Dynamics system
the characteristic Péclet number is Pe = Pe/Ds

0(φ), and since Ds
0 is a monotonically

decreasing function of φ, Pe = 1000 represents a different Pe for each value of φ. A
more accurate study would be to fix Pe, which would involve knowing Ds

0 a priori.
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Figure 13. High shear values of the long-time self-diffusion tensor, non-dimensionalized by γ̇a2, for
(a) the Brownian Dynamics system and (b) the Stokesian Dynamics system. The high shear points
here correspond to Pe = 1000.

Also, it is not known for perfect hard spheres with hydrodynamics as Pe→ ∞ if the
motion is diffusive, and this may be affecting the behaviour for large Pe in figure 14.
The high shear values of the yy- and zz-components of the long-time self-diffusion
tensor are compared with the experimental data of Eckstein, Bailey & Shapiro (1977),
Leighton & Acrivos (1987), Phan & Leighton (1993) and Breedveld et al. (1998)
and the theoretical estimates of Brady & Morris (1997) in figures 14(a) and 14(b),
respectively.

Brady & Morris (1997) use a boundary layer analysis to predict that the shear-
induced long-time self-diffusivity in the absence of hydrodynamic interactions scales
as

Ds
∞ ∼ γ̇a2φg∞(φ), (13)

where g∞(φ) is the pair-distribution function at infinite Pe as particle–particle contact
is approached from outside the boundary layer. Hydrodynamic interactions change
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Figure 14. Comparison of the high shear (a) yy-components and (b) zz-components of the long-time
self-diffusion tensor from the Stokesian Dynamics and Brownian Dynamics systems with previous
experimental results.

the scaling to

Ds
∞ ∼ γ̇a2(b/a− 1)0.22φg∞(φ), (14)

where the particles interact through a hard-sphere repulsive force at a radius b > a,
where a is the hydrodynamic radius. The functions g∞(φ) have the same physical
significance in (14) and (13), although the numerical value may be different with and
without hydrodynamics. Note that in the pure hydrodynamic limit of no interparticle
forces b → a and the diffusivity is zero. That is why our simulation results are
reported for large but finite Pe, as the residual Brownian motion breaks the flow
reversal symmetry and allows diffusion.

The theory does not predict g∞(φ) nor the coefficient in front. In the dilute limit
g∞(φ)→ 1 and in the absence of hydrodynamic interactions numerical coefficients are
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Figure 15. Brownian contribution to the high shear values of the long-time self-diffusion tensor
for the Stokesian Dynamics system. The high shear points here correspond to Pe = 1000.

given in Brady & Morris (1997). Since g∞(φ) is not known theoretically, in figure 14
we have used the equilibrium pair-distribution function at contact g0(φ) for hard
spheres determined from the Carnahan–Starling equation of state. This should be a
reasonable estimate for the φ-dependence of g∞(φ) over the volume-fraction range
studied here. The numerical coefficients reported were simply fit to the data, i.e.

Dyy = 0.23
16

45π
γ̇a2φg0(φ), Dzz = 0.17

8

45π
γ̇a2φg0(φ),

were used, where the factors 16
45
π and 8

45
π are the dilute-limit predictions of Brady &

Morris (1997).
Note that the shear-induced diffusivities with and without hydrodynamics are of

roughly the same magnitude, in keeping with the above theory of Brady & Morris
(1997).

Although the Stokesian Dynamics diffusivity at high Pe is dominated by its hydro-
dynamic contribution, there is a small Brownian contribution that scales like D0 and
is shown in figure 15. This contribution is a monotonically decreasing function of φ,
exhibiting the same qualitative behaviour at both high and low Pe, as random walks
are always hindered by the presence of other particles. The magnitudes are the same
as at equilibrium.

Rotational self-diffusivities are shown in figure 16. Again, there appears to be an
increase in the values of the diffusivity at lower φ, which reaches a plateau at higher
φ. The zz-component is by far the largest of the three diagonal components, with
Dyy > Dxx at the lower volume fractions and those two components being roughly
equal at higher φ. Rotational diffusion is dominated by its hydrodynamic contribution
at high Pe. The Brownian contributions in figure 17 show similar magnitudes and
behaviour to the equilibrium rotational diffusivities as Brownian diffusion is hindered
as the concentration is increased.
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Figure 17. Brownian contribution to the high shear values of the rotational long-time self-diffusion
tensor for the Stokesian Dynamics system. The high shear points here correspond to Pe = 1000.

5. Off-diagonal components of the self-diffusion tensor
The long-time self-diffusion tensor, being symmetric, has six independent compo-

nents. The three diagonal components have been discussed in the previous section.
Of the three off-diagonal components all are zero with the exception of Dxy = Dyx for
both translational and rotational diffusion in simple shear flow. Here, we shall discuss
the results for this interesting component and also possible physical mechanisms for
off-diagonal diffusion.

The diagonal components of Ds∞ are straightforward to interpret in terms of the
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Figure 18. The (x, y)-plane in simple shear flow with one particle at the origin. Arrows show
impact on the motion of the centre particle due to collisions with other particles.
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Figure 19. The xy-values of the long-time self-diffusion tensor as a function of Pe for
the Brownian Dynamics system. N = 1131, φ = 0.45.

macroscopic flux of tagged particles given by Fick’s law: Dxx represents a particle’s
ability to diffuse in the x-direction and so forth. To understand the Dxy component
requires examination of its corresponding mean-square displacement, 〈x(t)y(t)〉. As
shown in figure 18, the positive and negative xy-axes correspond to the extensional
and compressional directions in shear flow, respectively. Motion in the extensional
direction, whether it be outward or inward, results in positive xy-displacements and
diffusivities. Similarly, motion in the compressional direction results in negative xy-
displacements and diffusivities. Therefore, the sign and magnitude of Dxy show which
direction is more conducive to diffusion and by how much.

The Pe-dependence of Dxy at φ = 0.45 in the absence of hydrodynamic interactions
is shown in figure 19. At low shear rates, the diffusivity is positive and grows linearly
with Pe. The diffusivity reaches a maximum at Pe ≈ 10 followed by an abrupt decrease
and sign change. At high Pe, Dxy is negative and its absolute value grows linearly with
Pe. All of this behaviour is in agreement with the theoretical predictions of Morris &
Brady (1996) and Brady & Morris (1997).
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Figure 20. Projection of the pair-distribution function onto the (x, y)-plane obtained from Stokesian
Dynamics simulation, φ = 0.45, Pe = 1000. High probability is represented by light shades, low
probability by dark shades. Note the thin arcs of high probability near contact in each compressional
zone characteristic of the boundary layer.

According to (1), at low Pe the first correction to the diffusivity is O(PeÊ ), resulting
in a Dxy that grows linearly with Pe. Morris & Brady (1996) show two contributions
to this term. The first comes from random-walk, equilibrium-type diffusion occurring
in the O(PeÊ ) deformed microstructure first calculated by Batchelor (1977). The pair
probability, and therefore effectively the volume fraction, in the compressional zones is
higher than in the extensional zones due the perturbation of the structure by the flow.
Since long-time self-diffusion at equilibrium is a strictly decreasing function of volume
fraction, there is greater diffusion along the extensional axis than the compressional
axis, resulting in a positive Dxy . The second contribution involves examining the O(Pe)
effects of the flow on the diffusion process in an equilibrium microstructure (denoted
by the function b1 in Morris & Brady 1996). Motion of a tagged particle in the
compressional direction will increase the probability that a particle–particle collision,
which hinders random-walk-type diffusion, will take place due to the relative motion
of the other particles in the shear flow. Conversely, particles in the extensional zone
are being convected away from a marked particle and motion along the extensional
axis is less likely to result in a particle–particle collision. This facilitates motion in the
extensional direction compared to the compressional direction. Thus, each process
scales as Pe and each results in a positive contribution to Dxy .

The behaviour of Dxy at high shear rates in the absence of hydrodynamic inter-
actions can be explained by the relationship between diffusion and stress given in
(3). In contrast to the behaviour at low shear rates where particle–particle collisions
are a hindrance to random walks, collisions are the principal mechanism producing
diffusion at high Pe. The arrows in figure 18 show the effects of these collisions on the
motion of the test particle in the centre of the figure. There is a high probability of
particles near contact in the compressional zone at high shear rates (Brady & Morris
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Figure 21. The xy-values of the long-time self-diffusion tensor and their different contributions as
a function of Pe for the Stokesian Dynamics system. N = 27, φ = 0.45.

1997), as shown by our simulations in figure 20. This high probability density in a
boundary layer at contact is the origin of the O(ηγ̇) stresses seen in these systems
and increases the number of collisions – and therefore the particle motion – along the
compressional axis, resulting in a negative value of Dxy . Inclusion of hydrodynamic
interactions produces qualitatively similar behaviour.

Figure 21 shows Dxy and its main contributions as a function of Pe for the Stokesian
Dynamics system. As with the diagonal components, the data are best at higher Pe
where negative diffusivities of magnitude γ̇a2 are clearly seen, in agreement with the
theoretical work of Brady & Morris (1997). Near equilibrium, where Dxy is predicted
to vanish linearly with Pe, the small Stokesian Dynamics system proves unable to
resolve the behaviour. What is clear from the data, however, is that Dxy is indeed
positive and dominated by the Brownian contribution, validating the mechanism
proposed above.

The collective or Fickian diffusion coefficient measures a particle’s ability to diffuse
down a concentration gradient and is determined from Fick’s law,

j = −Dc · ∇n, (15)

where j is the particle flux and n is the particle concentration. Self-diffusion, which
we have studied here, corresponds to the Fickian flux of a tracer or tagged particle
as it diffuses down its (weak) concentration gradient. From this perspective of flux
down a concentration gradient, what do off-diagonal terms in the diffusion tensor
mean? Can a gradient in one direction cause a flux in another? To analyse this, we
shall look at high-Pe simple shear flow with a concentration gradient in either the x-
or y-directions.

A positive concentration gradient in the x-direction is illustrated in figure 22(a).
At large Pe, the diffusive motion of particles is driven by the formation of particle
doublets that exhibit solid-body-like clockwise rotation with the vorticity of the simple
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Figure 22. (a) Configuration of particles with a concentration gradient in the positive x-direction
showing a possible mechanism for a flux in the positive y-direction. (b) Configuration of particles
with a concentration gradient in the positive y-direction showing a possible mechanism for a flux
in the positive x-direction. Note that the darker particle shows where the particle would have been
if it had precisely followed its affine x-displacements. Although the particle is convected to the left
by the flow, there is a lag which is indicative of a positive x-flux.
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Figure 23. The (x, y)-plane in simple shear flow with one particle at the origin. Arrows showing
impact on the motion of the centre particle due to collisions with other particles are altered by the
presence of a concentration gradient. Larger and darker arrows are drawn on the side with higher
concentration due to an increase in the number of collisions in this region.

shear flow. In the absence of lubrication interactions, these doublets do not form and
the suspension orders (Bossis & Brady 1984; Dratler, Schowalter & Hoffman 1997).
(Note we have specifically limited the Brownian Dynamics simulations to times before
ordering to probe the diffusive behaviour in the disordered microstructure.) For the
doublet in figure 22(a), the particle on the left is in a region of lower concentration
and therefore rotates more easily than the particle to its right. The net result is a flux
of particles in the positive y-direction, and from (15) a negative Dyx.

The other case of a positive concentration gradient in the y-direction is shown in
figure 22(b). Here, the particle on the right is ‘freer’ to rotate because it is moving
into a region of lower concentration, causing a flux downward into a leftward-moving
streamline. At first glance this would appear to result in flux in the negative x-
direction, but when the affine motion is taken into account, this is not the case. As
the doublet is rotating downward, the leftward motion of the particle on the right
is impeded by the presence of the other particle in its compressional zone. This
causes a ‘lag’ in the particle’s leftward motion resulting in a net flux in the positive
x-direction. To show this more explicitly, one can take the time-dependent positions
of the particle, (x(t), y(t)), and calculate the affine displacements along the path to
calculate the affine contribution:

xa(t) =

∫
γ̇y(t) dt.

Since the particle is hindered by its contacting neighbour on the compressional axis,
the actual x-displacement is less than the affine displacement resulting in a net positive
x-displacement. From Fick’s law (15) we have Dxy < 0.

This gradient or Fickian diffusion can also be approached by looking at relative
displacements of particles in the different quadrants of the (x, y)-plane. Figure 23 is
similar to figure 18 except that the arrows have been made longer and darker on the
side of the test particle with higher concentration. This is done intuitively on the basis
that the higher concentration of particles causes a larger impact on the test particle
in the centre of the figure due to a relative increase in the number of particle–particle
collisions in these regions compared to the regions of lower concentration. Noting
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Figure 24. The xy-values of the rotational long-time self-diffusion tensor and their different
contributions as a function of Pe for the Stokesian Dynamics system. N = 27, φ = 0.45.

again the boundary layer in the compressional zones in figure 20, one can see the
positive y- and x-fluxes that will result from positive x- and y-gradients, respectively.

The long-time rotational self-diffusivity also has a non-zero off-diagonal component,
Dr
xy , in the presence of hydrodynamic interactions. Values of Dr

xy as a function
of Pe in figure 24 show behaviour that is quite similar to the translational case
except that each contribution has the opposite sign. At high Pe, the hydrodynamic
contribution dominates showing a positive contribution that grows linearly with Pe.
Near equilibrium, the negative Brownian contribution dominates but the numerical
data are too noisy to obtain a definitive low-Pe asymptote.

The mechanisms for off-diagonal rotational diffusion are related to those of the
translational case in that they are dependent on a higher probability of a tagged
particle having a neighbour in the compressional, rather than the extensional, zones.
Consider first the near equilibrium case where Brownian motion dominates. For two
particles near contact with each other, the ability to rotate is easiest along an axis of
rotation coincident with the centre-to-centre vector between the particles and is most
hindered along any direction perpendicular to this vector. In a shearing suspension,
there is a surplus of particles in the compressional zones, thus the favoured axis
for rotational diffusion is the compressional axis, while unfavoured axes lie in the
extensional–vorticity plane. The preference for rotation along the compressional rather
than extensional axis results in a negative Brownian contribution to Dr

xy .
At high Pe, the hydrodynamic contribution dominates. Hydrodynamic rotations are

caused by a rolling motion that neighbouring particles exhibit as they are convecting
past each other in the flow. Most of the rotation occurs in the plane of shear, explaining
the much larger values of Dr

zz compared to the other diagonal components. But, when
particles convecting past each other have an offset in the z-direction, hydrodynamic
rotations occur on other axes. Particles translating in the compressional direction with
an offset in the z-direction would rotate along the extensional axis, while similar par-
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ticles translating along the extensional axis would rotate along the compressional axis.
The surplus of particles in the compressional zone causes more particles to translate
in the compressional direction – as noted by the negative sign of the translational Dxy
in this regime – resulting in preferred rotation along the extensional axis, or a positive
hydrodynamic contribution to Dr

xy . This is an important observation as it verifies the
results for the translational Dxy with an argument that does not involve exclusion of
the affine motion which is unimportant for rotational motion.

6. Summary and concluding remarks
Results for the long-time self-diffusivity have been presented with and without

hydrodynamic interactions. Without hydrodynamic interactions, large systems were
used enabling accurate results to be obtained for all values of Pe, including verification
of the O(Pe) and O(Pe3/2) corrections to the equilibrium long-time self-diffusivity
predicted by Morris & Brady (1996). Qualitative (and semi-quantitative) agreement
with the theoretical work of Brady & Morris (1997) was achieved at high Pe, with
diffusivities scaling like γ̇a2. The φ-dependence of the diffusivity was also examined.
Equilibrium self-diffusivities are decreasing functions of φ and agree with the previous
results of Cichocki & Hinsen (1992) and Schaertl & Sillescu (1994). Diffusivities at
Pe = 1000 were found to be strictly increasing functions of φ with relative sizes of
the diagonal components consistent with the analogy that diffusion is directly related
to the stress in this regime.

Inclusion of hydrodynamic interactions adds a configurational- and concentration-
dependent particle mobility. In the presence of hydrodynamic interactions we were
able to split the diffusivity into its Brownian and hydrodynamic contributions, giving
insight into the mechanisms for diffusion over the full range of Pe. Brownian diffusion,
dominant at low Pe, is a random-walk process that is hindered by the presence of other
particles. At high shear rates, the prevalent diffusive mechanism is hydrodynamic in
origin consisting of displacements due to interactions between neighbouring particles
and is thus enhanced by the presence of other particles. Thus, near equilibrium, the
diffusivity, scaled by D0, is found to be a monotonically decreasing function of φ,
with lower values than in the Brownian Dynamics system. At high Pe, each diagonal
component of the diffusivity, scaled by γ̇a2, grows with φ up to a point and then
appears to reach a plateau near φ ≈ 0.50. It is unclear how this property will behave
at higher volume fractions. We were limited to φ < 0.50 due to system size restraints
imposed by the computationally intensive Stokesian Dynamics algorithm. Note that
the size limitations may affect the values of the diffusivities due to issues associated
with fitting the proper microstructure in the small periodic cell even if a very large
number of independent runs reduces the statistical noise to near zero.

For the Pe-dependence in the Stokesian Dynamic system, very good data were
obtained at high shear rates, but we were unable to obtain a good measure of the
first correction of the self-diffusivity from equilibrium due to shear. The diffusivity
is enhanced by the flow at low Pe mainly due to an increase in Brownian diffusion.
The hydrodynamic contribution clearly vanishes like Pe2 at low Pe in contrast to the
predicted Pe3/2 scaling; as was mentioned earlier, the system sizes are too small to
fit the aPe−1/2 outer length scale necessary to achieve the Pe3/2 diffusivity into the
simulation cell.

Rotational self-diffusivities are also reported in this work, showing similar behaviour
to the translational self-diffusivities. The zz-component is much larger than the other
two components as rotation along the z-axis represents rotation in the plane of shear.
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Another notable exception is an initial decrease in the rotational diffusivity from
its equilibrium value at low shear rates before its linear growth at high shear rates
due to hydrodynamic interactions. Unlike the translational diffusivity, the Brownian
rotational diffusivity is never enhanced by the flow, being a decreasing function of Pe
for all Pe.

This work presents the first known results for colloidal suspensions on the xy-
component to the long-time self-diffusion tensor. Two underlying factors dictate the
behaviour of this component. First, in shear flow there is a build-up of particles
in the compressional zone relative to the extensional zone. Second, as discussed
before, Brownian diffusion is hindered by the presence of other particles whereas
hydrodynamic diffusion is enhanced. Thus, at low Pe both translation along the
compressional axis and rotation around the extensional axis are relatively hindered
leading to a positive Dxy and a negative Dr

xy , respectively. At high Pe, hydrodynamic
diffusion takes over but the surplus in the compressional zone remains, thus reversing
the signs of both Dxy and Dr

xy . It would very interesting to see if this off-diagonal
diffusivity could be observed in an experiment. Care will be needed to remove
the convectively enhanced dispersion which scales as Dyyt

2 in order to reveal the
underlying Dxy .

The data for the Brownian Dynamics system are of higher quality and more
internally consistent than the Stokesian Dynamics system particularly at high volume
fractions and low shear rates. The main reason for this is the size limitations put on
the Stokesian Dynamics system due to the high computational cost of this algorithm.
In the future, as hardware computational speed increases and Stokesian Dynamics
algorithms are improved, it would be interesting to apply the method used to this
work to study larger systems at high φ and/or low Pe in the presence of hydrodynamic
interactions to clarify some issues raised here.

This work was supported in part by grant CTS-9420415 from the National Science
Foundation and grant NAG8-1237 from NASA.
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